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Abstract

Based on the continuously distributed dislocation theory (CDDT), the problem of stress equilibrium of a Zener—
Stroh—Koehler (ZSK)-type crack in an anisotropic body under mix-mode loading conditions is solved. The solution
is obtained for the condition that plastic yielding occurs rectilinearly in front of the crack-tip. The plastic zones size,
the crack opening displacements and the energy release rates under mix-mode loading conditions are derived, in closed
forms. The orientation dependence in the above quantities is discussed.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

In the early studies on the mechanisms of metal fracture, a concept of crack nucleation was collectively
developed by Zener (1948), Koehler (1952) and Stroh (1957). This concept was based on the observation
that dislocation pile-ups in front of an obstacle obstructing the propagation of slip bands was in fact the
crack nuclei. In the literature, these types of cracks are referred to as Zener—Stroh—Koehler (ZSK) cracks,
as summarized by Weetman (1996). To date, such cracks have been treated as if they were in isotropic bod-
ies, even though they are most likely to form in crystalline materials, which have definite slip systems and
are generally anisotropic in nature.

As regard to materials with definite slip systems, it is important to realize that material orientation also
has a physical effect on crack nucleation and propagation, not only by how much stress is mechanically
resolved on the slip plane. In today’s engineering, single crystal materials are used as components (from
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Nomenclature

crack length

¢ dislocation distribution length, suffixed with i=1,2,3 for mode II, mode I and mode III,
respectively

B{x) the ith component of the dislocation distribution vector B(x), i =1,2,3 for glide, climb and
screw dislocations respectively

Ciji the fourth rank tensor of elastic modulus of the material

u; the ith component of the displacement vector u in a Cartesian coordinate system

o the stress tensor

S the ith component of the force vector s = {a1,012,013} on a plane normal to the x; axis, as
decomposed from the stress tensor

t; the ith component of the force vector t = {o,1,02,053} on a plane normal to the x, axis, as

decomposed from the stress tensor

tF the friction resistance in the direction corresponding to ¢;

Do the material’s elastic eigenvalue, « = 1,2,3, the root with positive imaginary part

Zg complex variable, defined as z, = x| + p,x; for a =1,2,3

P a diagonal matrix of p,

A Ay, @ matrix of the material’s eigenvectors

L L;,, a 3 x 3 matrix derived from L,, = (Cix; + pyCioiz) A

h(z) complex field potential of a unit line dislocation

F the material’s characteristic elastic matrix, derived from F = —2iLLT, where i = v/—1 and the
superscript ‘T’ indicates the transpose transformation of the matrix

G the energy release rate

electronic devices to gas turbine engines) to carry thermomechanical loads. Therefore, study of the behav-
iour of ZSK cracks in anisotropic materials is important to understand the mechanism and process of crack
nucleation in single crystal materials. It is also a precursor of similar studies for polycrystalline materials.

As indicated by Weetman (1996), the ZSK crack and the better-known Griffith—Inglis (GI) crack
(Griffith, 1921; Inglis, 1913) form a complementary pair, where a ZSK crack is composed of a symmetric
distribution of dislocations, the other crack being asymmetric, according to the Bilby—Cottrell-Swinden
model (Bilby et al., 1963), and vice versa in stress distribution along the crack line. A ZSK crack does
not close itself when the stresses are removed from the body, as the piling-up Burgers vectors act as the
wedge to open the crack, whereas a Griffith—Inglis crack does, ideally. It can be imagined that ZSK cracks
may form even under compression, as long as micro-plasticity by slip occurs unevenly due to the presence
of microstructural inhomogeneities. This is equivalent to infer that crack nuclei may form under compres-
sion, which would have a significant impact on the material’s life under low-cycle fatigue conditions (cycling
with fully-reversed mechanical strains).

Much attention has been paid to GI-type cracks in the past, because they are more straightforward to
deal with in the context of fracture mechanics. Therefore, GI cracks are mostly perceived as the initial flaws
in the damage tolerance design philosophy. As pointed out by Zener (1948), GI cracks are not likely to
form as the first step in the fracture of metals with the propensity of plastic deformation (crystallographic
slip) to ease the stress build up, unless they start at internal pores. It may then be envisaged that GI cracks
are present in metals as the result of coalescence of many finer ZSK cracks and/or interactions of the metal
with the chemistry of the environment. Many of these microcracking processes occur at a scale below the
state-of-the-art non-destructive inspection limit, but they often consume a significant portion of the useful
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life of a material. In life prediction, crack nucleation and small crack growth are important issues if metal
fracture is to be considered as a holistic life process. Mathematical formulations for each stage of the holis-
tic life of a material need to be developed.

To that end, we use the continuously distributed dislocation theory (CDDT) to develop a mathematical
formulation for ZSK cracks in general anisotropic materials, studying crack nucleation in metallic materi-
als. The CDDT has been widely applied to deal with point/line-defects in an otherwise homogeneous mate-
rial, owing to the original work by Eshelby et al. (1953) and later extensions by many other researchers
(Stroh, 1958; Bilby et al., 1963; Dundurs and Mura, 1964; Dundurs, 1969; Barnett and Asaro, 1972;
Conninou and Dundurs, 1980; Ting, 1986; Suo, 1990; Suo et al., 1992; Hwu and Yen, 1993; Aaundi and
Deng, 1995; Ting, 1996; Weetman, 1996; Fulton and Gao, 1997; Wu et al., 2001). The present work is
an extension of the previous lines of work on dislocation- based fracture mechanics.

In crystalline materials, slip proceeds on preferred planes (defined by the plane normal ;) and in definite
directions (defined by the slip direction b;), resulting in the formation of rectilinear persistent slip bands
(PSB). It has long been recognized that cracks may nucleate from these PSBs (Thompson and Wadsworth,
1958). Therefore, in the early stage of crack formation when the cracks are small, it is most likely that
cracks also form on preferred crystallographic planes in metals. The proceeding of a definite slip system
is controlled by the following equation:

tzl': = O'k//vljc/ (1)

where & is the critical resolved shear stress (CRSS), o4 is the applied stress tensor, and
W, = 1/2(byn’, + binl) is the generalized Schmid factor, and i represent different slip system.

2. The model

In 1958, Stroh (1958) developed an elaborate mathematical formalism for anisotropic elasticity, known
as the Stroh formalism, which reduces the stress equilibrium conditions of a solid to an eigenvalue problem.
The eigenroots and the eigenvectors are then used to construct characteristic functions of displacements
and stresses, as shown in Appendix A.

For a matter of simplicity, in the present treatment we consider an infinite anisotropic medium contain-
ing a crack of size 2a lying in the plane of x; — x3(|x;| < a,x, =0, |x3| < c0). We assume that dislocations
are continuously distributed over the range [—c;, ¢;], as described by the density function vector (numbers of
Burgers vectors per unit length)

B(x) = {Bi(x), Bo(x), Bs (x)}" 2)

where the subscripts i = 1,2, 3 designates the edge-glide, edge-climb and screw dislocations, corresponding
to modes II, I, and III, respectively, as schematically shown in Fig. 1. In this crack configuration, for the
convenience of description, the coordinate x; is set in parallel with the crack direction, x5 parallel with the
crack front, and x, perpendicular to the crack plane. The applied stresses are also defined in reference to
this coordinate system. Henceforth, the friction stresses in the x; and x3 directions could be directly related
the CRSS of the corresponding slip system. But, the friction stress in x, direction, 7}, is a normal stress com-
ponent, it is only understood in a generalized sense as the resistance to plastic yield in the specified direc-
tion. For example, if the crack formation is a result of the operation of duplex slip systems, the nominal
yield stress can be determined from the favourable Schmid relation. Such evaluations are pertinent to par-
ticular crystal types, which is out of the scope of the present paper. The present theory is a generalized
mathematical treatment for distributed dislocations leading to the formation of rectilinear cracks.

The distributed dislocations on the crack plane satisfy the conditions: (i) the total force exerted by these
distributed dislocations produces a net-zero stress (#; =0) along the crack surface [—a,a] and, (ii) it
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Fig. 1. Schematic representation of modes I, II, IIT cracks with climb, glide and screw dislocations.

produces a negative yield (; = —F) in the region [—¢;, —a] and a positive yield (z; = /") in the region [a, ¢;].
These conditions are summarized in the following equation (Weetman, 1996):

Foa<xi <

t(x))=40 —a<x<a (3)

i

—c; <x1 < —a

For mode 1, the “positive/negative yield” means yield in tension/compression respectively, while in
modes II and III, the sense is just relative to the reference coordinate. When the crack occurs as the result
of operation of a single slip system, it is in a shearing mode (modes II or III), then ¢ is the critical resolved
shear stress for that particular slip system. Mode I cracks (in metals), however, are more likely the result of
multiple slips or duplex slips, then the corresponding “friction resistance”, 75, can be determined using the
Schmid law, Eq. (1), based on the slip systems involved. In practical cases, for example, the slip-band crack-
ing examined by Thompson and Wadsworth (1958) at the early stage of fatigue was most likely in shearing
modes, even the specimen was under uniaxial tension; whereas long cracks in polycrystalline materials and
cracks lying on a symmetrical plane of single crystals, such as the (010) plane in face centred cubic mate-
rials, under uniaxial tension are mode-I cracks. For all these cases, in general, # could be deduced from the
yield criteria. Therefore, 77 can be regarded as material constants. Generally, they would need to be deter-
mined from physical experiments on internal friction or dislocation velocity measurements or deduced from
mechanical testing of single crystal material specimens under simple tension or in shearing. In theory, they
can also be estimated based on the Peierls—-Nabarro mechanism for single-phase materials (e.g. pure metals)
or its modifications when precipitation of second phase occurs in an alloy as the additional strengthening
mechanism (Hirth and Lothe, 1982).
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On the other hand, the collective force exerted by the continuously distributed dislocations at any point
x1(x, = 0) can be expressed by:
@ FyB;(£)dE
() = [ 52 4
)= | s @)
where ¢; is the vector force acting on the crack plane (Appendix A), F;; is the material’s characteristic matrix

defined in Appendix A (A.6), and ¢ is the coordinate variable over the range [—c;, ¢;].
For equilibrium, we have

~

“ LB (O)d Foa<x <g
iiB; _ B
/Ci 200 = &) 0 a<x <a (5)

F —ci<x; < —a

i

Generally, when the crack is under a mixed mode condition, there exists an order of dominance,
a<c; << (i #j # k), and Eq. (5) can be solved by that order. As an example, without losing gener-
ality, we shall seek the solution for the condition of a < ¢3 < ¢; < ¢, which applies to the case of mode-I
dominance. Then, each dislocation distribution component can be solved using Muskhelishvili’s equations
(1953) (details are given in Appendix B). The solutions are given as follows:

The plastic zone sizes for modes I, I and IIT are defined, respectively, as

N sz i j=1,2,3) (6a)
Je 4M f; LI (6b)
/e ~1,2,3) (6¢)

and the dislocation distribution functions are given as

2F; 1
By(x1) = ;2 2 (x1,62) — Foy FaiBi(x1) — Foy FosBs(x1) x| < e (7a)
ZMIJ J -1
Bi(x) = T‘//(xl,cl)—MquaBa(xl) bei| < e (7b)
2F3 't .
B3(X1>ZTW()CI7C3) |X1‘ < C3 (]:17273,J:1,2) (7C)
where
\/Cz — a2+ \/c2 —x2
Y(x,c) = (8)
\/02 — a2 - \/cz —x2

F! ;; are the elements of the inverse matrix of F, j ! are the elements of the inverse of a principal submatrix
of F defined by Eq. (B.12) in Appendix B, and b are the total Burgers vector in each respective direction.

Eq. (6) shows that the total length of dlslocatlon distribution, ¢, in a particular mode is affected by dis-
location pile-ups in other modes, due to the anisotropic elastic coupling, so is true for the plastic yielding
zone size, which equals to ¢ — a. The dislocation distribution functions, as given by Eq. (7), in general, also
consist of multiple pile-ups for modes of higher dominance. The elementary distribution function, i.e.,
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¢o(x1,¢;), represents one dislocation pile-up, symmetrical about the crack centre, with extreme (to the infin-
ity) density at x; = +a, and vanishing at the endpoints of the plastic zone, x| = +¢;. In general, the magn-
itudes of these quantities in an anisotropic material depend on the orientation of the materials, since they
are related to F; and ¢F, as described in the framework of the Stroh formalism and Hill’s theory of plasticity.

The displacement discontinuity, as an accumulation of the Burgers vector, can be calculated by the fol-
lowing integral:

x|
u; = —/ Bi(x)dx |xi| < ¢ 9)
From Eq. (9) it is derived

2F3

Uy =—_ {ap(xi,c3) —xip(xi,e3) + x(xi,e3)} |l <es (10)
2M Y -1

u = - {ap(xi,e1) —xip(xi,c1) + x(xi,01)} = My Fraus(xn) x| <e (11)
2F5 8 -1 -1

Uy = T{a(/’(th) —xip(x1,02) + x(x,€2)} — Foy Foun (x1) — Foy Fosus(x1) || < e (12)

(=123 J=1,2)

ave2 —x2+xvVer — a2
x,¢) =1In 13
#.) ave? —x? —xvVet —a? (13)
r(x,¢) =2V —a? (g — sin”! ;) (14)
The crack-tip opening displacements can be obtained, by taking the values from Egs. (10)—(12) at x; = a, as:
4F1F
us(a) :% { c%—az(g—sinl c%) —aln%} (15)
Myl o (n . a cl 1
ul(a):T ¢ —a E—Sln a —dlnz —MIJFJ3M3(LZ) (16)
AFRG [ [ (. a ol Fiy Fas
=== —a*| = — — ] —aln—=| —— - 1
uy(a) = ¢y —a*{ 5 —sin o aln— P ui(a) o uz(a) (17)

3. Discussion

In the above section, we have obtained the general solution for a ZSK crack with plastic strip-yielding in
an anisotropic material under the mixed mode I, IT and III conditions showing that a < ¢; < ¢; < ¢;. Inter-
ests may lie in some special cases, which are discussed separately below.

3.1. Isotropic cases
For isotropic materials, F is a diagonal matrix with Fy; = F»» = p/(1 — v) and Fs3 = u, where u is the

shear modulus and v is the Poisson’s ratio. It is then easy to verify that our solution, in the form of Egs.
(6) and (7), reduces to that obtained by Weetman (1996)
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i) = () (18)

(@)
ub
\Jc2—at= 4%% (19)

where o), = (1 —v), and a3 = 1.

In this case, there is no coupling between the different modes of fracture.

Comparing our solution with that known for isotropic materials, it is interesting to note that in an aniso-
tropic material, there is a general coupling of I-1I-IIT modes of fracture. Since the “‘strength” of a pure
ZSK crack is controlled by the dislocation pile-up accumulations, the mode dominance is therefore depend-
ent upon the total Burgers vector in the respective direction. In this paper, we have dealt with the situation
of mode-I dominance with a < ¢; < ¢ < ¢, implying that b<T3 ) < b(T1 ) < b(T2 ) Other cases can be solved in a
similar manner. In general, the dislocation distribution and the crack-opening displacement of the higher
mode of dominance are increasingly affected by dislocations of lesser mode(s), as compared to its counter-
parts in a similar isotropic material, due to the coupling effect of elastic anisotropy.

3.2. Elastic cases

In the limiting case when /¥ — oo then ¢(i = 1,2,3) — a, which means that the dislocation distributions
are limited within the crack length in an elastic material. The distribution functions, Egs. (7), then reduces
to

by
2

/@ — xi

Bi(x)) = (20)

which is identical to that in isotropic elastic materials (Weetman, 1996).
The elastic stress ahead of the crack-tip can be calculated as

a ) —
() = / FuBe)de __ Fobr [l—gtanl—x% "2] (21)

2 2m(xy — &) 21\/x7 — a? T a

with the stress intensity defined as

F;bY)

K; = lim \/2n(x; — a)t;(x)) = =2 22
x1—a ( ! ) ( 1) 2\/7'[61 ( )
Unlike a GI crack whose intensity does not vary with material anisotropy, the stress intensity of a ZSK
crack does vary with the material’s anisotropic properties, i.e., it is orientation-dependent. As such, nucle-

ation and growth of ZSK cracks in crystalline materials are expected to be orientation-dependent.
It is also interesting to examine the elastic energy release rate, as obtained from the Irwin closure inte-

gral, as follows:

a+Aa l_A bflf)Fb_(rﬂ 1 .
G= lim — Y Xu(a + Aa — x)dx = —LL = _K,F'K; 23

AaHOZAa/a l() ( + ) S7a 2 i " ( )
Since the matrix F ,.;1 is positive definite (the determinant of the matrix is positive), the energy release rate is
non-negative for all loading conditions. It is also noted that the elastic energy release rate of a ZSK crack,
when expressed in terms of the stress intensities, is identical to that of a GI crack. However, unlike a GI
crack, which tends to become unstable once its energy release rate (~o” a) reaches a critical value, the for-
mation of a ZSK crack is self-stabilized, since its energy release rate is inversely proportional to the crack
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size, 2a. This means that crack propagation would lower the energy of a ZSK crack, if the corresponding
piled-up Burgers vectors were held constant.

3.3. Small-scale-yielding conditions

Another interesting case is the so-called small-scale-yielding condition, i.e., (¢; — a)/a < 1. Then, Egs.
(15)«(17) reduce to

4]

S L 2
us(a) SmaFy F (24)
2
[0+ M F?]
ui(a) = Srall 1 — M, Fus(a) (25)
A2
[szb%/)} Fsy F
_ Fuo o Fn 26
uy(a) SraFnll  Fa ui(a) o u3(a) (26)

and the energy release rate, G, can be obtained from the Irwin closure integral
G = tfui(a) (27)

A numerical example of dislocation distributions resulting into formation of a ZSK crack on a (111)
plane in a single crystal Ni-base superalloy (ignoring the ' precipitates) is given below.
The elastic compliances of f.c.c. Ni are (Nye, 1957)

Si1 = $2 = s33 = 0.00799 (GPa) ™'
S1p = 523 = 531 = —0.00312 (GPa) '

S44 = S55 = S = 0.00844 (GPa)_l

Choosing the Cartesian coordinates xyz as: x—[110], y—[111]and z—112](by convention, x is the crack
direction, y is the direction perpendicular to the crack, and z the anti-plane axis), the eigen-matrix F~' an be
solved, following the procedures outlined in Appendix A or given in detail in the book by Ting (1996), as

0.00889 0 —0.00267
Fl = 0 0.00802 0 (GPa)™'
—0.00267 0  0.01397

The material friction resistances are estimated (based on the yield properties of SRR99 studied by Li and
Smith, 1995) to be

£ =530 MPa, £ =839 MPa, 7, =492 MPa

Suppose that total accumulations of Burgers vectors took place in the order of b(T1 ) Ja=
0.02, b<T2 ) /a = 0.05, and b<T3 ) /a = 0.02, the respective dislocation density function could be determined by
Eq. (7), and distribution is shown in Fig. 2. For comparison, the mode I distribution in a would-be isotropic
material with the stiffness close to that of the Ni-base superalloy in the respective direction is also shown. It
can be seen that there is practically no difference between the isotropic material and the anisotropic material
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Fig. 2. Dislocation distributions for a mix-mode ZSK crack.

in the dominant mode (in this case, mode I) as long as the moduli are matching for the respective mode.
However, there are differences in the modes II and III, even though, the total Burgers vector accumulations
are equal for the two modes. This is due to the elastic anisotropic coupling, as shown in the F~' matrix. The
coupling, of course, is dependent on the orientation of the crystal with respective to the load. The effect will
become important particularly in mixed-mode situations, which are mostly true for crack nucleation con-
ditions. Since the degree of coupling is determined from the eigen-matrix F~!' for the particular material/
orientation, it is hard to further generalize on this point. Due considerations should be given to this though,
when studying crack behaviour in anisotropic materials.

4. Conclusion

Elastic—plastic fracture mechanics formulations have been derived for a Zener—Stroh—Koehler crack of
mixed I-II-1II modes in anisotropic materials, using the CDDT approach. Closed form expressions of
CTOD and the energy release rate, G, are obtained, which are dependent upon the elastic—plastic properties
of the anisotropic crystalline material, via its characteristic matrices, F7;; "and ¢F, and their limiting cases of
pure elasticity and small-scale yielding conditions are also discussed.

In light of the above discussion, the effect of material anisotropy should be considered when studying
crack nucleation in the form of ZSK cracks, as well as GI cracks. At a fine microstructural scale, the effect
of crystalline orientation will manifest, no matter if the bulk material is polycrystalline or is a single crystal.
Further numerical studies for specific alloy systems shall be pursued in future work.
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Appendix A. The Stroh Formalism

For the plane strain problems of a homogeneous anisotropic elastic body where displacements and stress
depend only on the in-plane coordinates x; and x,, a general representation for the displacement vector u,
and the stresses s and t, can be expressed in terms of a complex field potential vector h(z) by the Stroh for-
malism, as (Stroh, 1958; Ting, 1996)

u={u,up,u3}' = Ah(z) + Ah(z)
S = {0-1170-127 0-13}T = _LPh/(Z) — ﬁh/(z) (Al)
t={02,0m,05}" =Lh(z) + Lh'(z)

where A and L (L;;, = [Ciox1 + po Ciora] Axs) are 3 x 3 non-singular material matrices, and P is a diagonal
matrix of three complex eigenvalues p, (¢« =1,2,3, Im(p,) > 0). The complex variable z is defined as
z=x1 + px,.

This set of equations satisfies the equilibrium condition:

Cijatt1; = 0 (A-Z)
Hence, the material’s eigenvalues p, (« = 1,2,3) should satisfy the sextic equation
|Citkt + PCirga + PCisa + P*Ciria| = 0 (A.3)

and the eigenvectors satisfy
(Cikr + p,Cirz + p,Ciona +piCi2k2)Ako¢ =0 =123 (A.4)
For a unit line dislocation b, the elementary field potential, in the absence of a line tension force, is given by

Koehler, 1952

h(z) (Inz)Lb (A.5)

1
C 2mi

where (f(z)) = diag.[f(z1),/(z2),/(z3)] and 1" is the imaginary unit (i = /—1).
In the Stroh formalism, a matrix, F, is defined as

F = —2iLL" (A.6)

which has been proven to be real and positive-definite.

Appendix B. The solutions of Eq. (5) under Conditions a < c3<¢; <c¢;

Eq. (5) involves multi-length integrals with coupling induced by the anisotropic elasticity, which seems to
be difficult to solve directly. Actually, taking advantage of the condition, B{(x;) = 0 when |x,| > ¢,, the inte-
grations over the shorter intervals [+¢;] and [£¢;] can be extended to [+¢,], without altering the integration
results. In this case, the equilibrium equations for a ZSK can be written as

o FyBy(dE

/sz—ﬁ@ﬁ), |X1| < Cy (Bl)
@ FyB;(§)dE

/C2 m = tz(x1)7 |x1| < ¢ (BZ)
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2 FyBy(E)dE
/C2 m = t3(X1), |X1‘ < C3 (B3)

where
Foa<x <g
=20 —a<x<a (B.4)

lF

i

—c; <x1 < —a

Because of the condition a < ¢3 < ¢ < ¢,, the solution should be sought for dislocations with the smallest
distribution size first, and then to the next size until the final, i.e., the largest size, is solved.
The governing equation for Bs(x;) is given as

“ B o iy
[ ey = Foltn) = onfo) (B5)

The solution of this integral equation, which is bounded at x; = + ¢3, can be obtained, directly using Musk-
helishvili’s (1953) method, in the following form:

Byfw) = -2V / £dt (B.6)

2
g —¢

and, ws(x;) should also satisfy the condition (Weetman, 1996)

é X|CO3()C])dX| B b—?)

S B.7
A —xt 2 (B.7)
where b(T3 ) is the total burgers vector along the x3 coordinate.
Eq. (B.6) leads to
F
258 =1,2,3 B.8
By(vi) =——=yln,e3) ((=123) Inf<e (B.8)
where
\/02 — a2+ \/Cz )
Y(x,c) = (B.9)
\/c2 — a2 — Vet —x?
while Eq. (B.7) results in
b(3)
A —at= 4FT (B.10)
3 1
To solve for B;j(x;), we rearrange Egs. (B.1) and (B.2), such that
‘@ By(&)dé . “ Fp3Bs()dé
_ - M _ pCESEA Y ) J=1.2 B.11
| g = et = () - [ FEEEE) =12 l<a (B.11)
where matrix M~ is the inverse of a principal submatrix of F, as defined by
-
M = {F“ F”} (B.12)
Fy Fa
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Noting that F is real symmetric and positive definite, so is the matrix M. Then, substituting Eq. (B.8) into
Eq. (B.11), and also using Muskhelishvili’s method, we obtain

2M Y

Bl (Xl) lﬁ(xl,cl) — M;JIFJ:;B}(.X:I) |X1| < C1 (B13)

while ¢; satisfies the condition

“ xlwl(xl)dxl _ br(rl)

—_ B.14
ct —x? 2 ( )
Substituting Eq. (B.11) into Eq. (B.14) and noting that
< FpBs(E)d ° e xdx Fj3bY)
/ 2]3 3(5) 5:_/ FJ3B3(f)df ” < 2:— J32T (B.lS)
Vet —x3 n(x — ¢) —e| —e3 2m(&€ —x1)\/c] — x]
we find
) 3)
PR, S L SV ) (B.16)
4M ;15
Finally, for B,(x;), it follows from Eq. (B.2) that
2 By(&)d¢
— = < B.17
| s o) Wl <e (B.17)
where
“CFynBy( df 3 FyBs(
. 2B ( 23B3(
= —_ B.l
o) = 5 (e [ AT [ T (B.13)
The solution of Egs. (15) and (16) can be obtained as
2F MY
Bz(xl) jrz 2 l//(xl,cz) F;lelel(xl) —F;21F2333(X1) |)C1| < C (B19)
From the condition
@ xjo(x)dvy _ by (B.20)
g —x3 2
we determine that
Fz«bw
Ad-a= 41th (B.21)
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